Fatty acid metabolism in obesity and type 2 diabetes mellitus.
نویسنده
چکیده
Disturbances in pathways of lipolysis and fatty acid handling are of importance in the aetiology of obesity and type 2 diabetes mellitus. There is evidence that a lowered catecholamine-mediated lipolytic response may play a role in the development and maintenance of increased adipose tissue stores. Increased adipose tissue stores, a disturbed insulin-mediated regulation of lipolysis and subnormal skeletal muscle non-esterified fatty acid (NEFA) uptake under conditions of high lipolytic rate may increase circulating NEFA concentrations, which may promote insulin resistance and cardiovascular complications. In addition, a disturbance of NEFA uptake by adipose tissue postprandially is also a critical determinant of plasma NEFA concentration. Furthermore, evidence is increasing that insulin-resistant muscle is characterised by a lowered ability to oxidise fatty acids. A dysbalance between fatty acid uptake and fatty acid oxidation may in turn be a factor promoting accumulation of lipid intermediates and triacylglycerols within skeletal muscle, which is strongly associated with skeletal muscle insulin resistance. The present review describes the reported disturbances in pathways of lipolysis and skeletal muscle fatty acid handling, and discusses underlying mechanisms and metabolic consequences of these disturbances.
منابع مشابه
Basic disturbances in skeletal muscle fatty acid metabolism in obesity and type 2 diabetes mellitus.
The present article addresses the hypothesis that disturbances in skeletal muscle fatty acid handling in abdominal obesity and type 2 diabetes mellitus may play a role in the aetiology of increased adipose tissue stores, increased triacylglycerol storage in skeletal muscle and skeletal muscle insulin resistance. The uptake and/or oxidation of fatty acids have been shown to be impaired during po...
متن کاملFatty Acids Stimulate Glucose Uptake by the PI3K/AMPK/Akt and PI3K/ERK1/2 Pathways
Obesity-driven type II diabetes mellitus has become a major crisis in modern societies. In the United States, over 80% of type II diabetic patients are obese [1]. In the case of Chinese adult diabetic patients, diabetes is also significantly associated with obesity [2]. Previous investigations have focused on looking for obesity-related factors that cause insulin resistance, the failure of the ...
متن کاملObesity and Insulin Resistance: An Abridged Molecular Correlation
A relationship between obesity and type 2 diabetes is now generally well accepted. This relationship represents several major health hazards including morbid obesity and cardiovascular complications worldwide. Diabetes mellitus is a complex metabolic disorder characterized by impaired insulin release and insulin resistance. Lipids play an important physiological role in skeletal muscle, heart, ...
متن کاملPrevention and treatment of obesity, insulin resistance, and diabetes by bile acid-binding resin.
Bile acid-binding resins, such as cholestyramine and colestimide, have been clinically used as cholesterol-lowering agents. These agents bind bile acids in the intestine and reduce enterohepatic circulation of bile acids, leading to accelerated conversion of cholesterol to bile acids. A significant improvement in glycemic control was reported in patients with type 2 diabetes whose hyperlipidemi...
متن کاملThe Role of Microbial Amino Acid Metabolism in Host Metabolism
Disruptions in gut microbiota composition and function are increasingly implicated in the pathogenesis of obesity, insulin resistance, and type 2 diabetes mellitus. The functional output of the gut microbiota, including short-chain fatty acids and amino acids, are thought to be important modulators underlying the development of these disorders. Gut bacteria can alter the bioavailability of amin...
متن کاملEndurance exercise training programs intestinal lipid metabolism in a rat model of obesity and type 2 diabetes
Endurance exercise has been shown to improve metabolic outcomes in obesity and type 2 diabetes; however, the physiological and molecular mechanisms for these benefits are not completely understood. Although endurance exercise has been shown to decrease lipogenesis, promote fatty acid oxidation (FAO), and increase mitochondrial biosynthesis in adipose tissue, muscle, and liver, its effects on in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Proceedings of the Nutrition Society
دوره 62 3 شماره
صفحات -
تاریخ انتشار 2003